Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903801

ABSTRACT

Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor's performance when exposed to prostate cancer cells' media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.

2.
ACS Eng Au ; 3(1): 37-44, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36820227

ABSTRACT

Plastic production has steadily increased worldwide at a staggering pace. The polymer industry is, unfortunately, C-intensive, and accumulation of plastics in the environment has become a major issue. Plastic waste valorization into fresh monomers for production of virgin plastics can reduce both the consumption of fossil feedstocks and the environmental pollution, making the plastic economy more sustainable. Recently, the chemical recycling of plastics has been studied as an innovative solution to achieve a fully sustainable cycle. In this way, plastics are depolymerized to their monomers or/and oligomers appropriate for repolymerization, closing the loop. In this work, PET was depolymerized to its bis(2-hydroxyethyl) terephthalate (BHET) monomer via glycolysis, using ethylene glycol (EG) in the presence of niobia-based catalysts. Using a sulfated niobia catalyst treated at 573 K, we obtained 100% conversion of PET and 85% yield toward BHET at 195 °C in 220 min. This approach allows recycling of the PET at reasonable conditions using an inexpensive and nontoxic material as a catalyst.

3.
ACS Appl Mater Interfaces ; 14(38): 43749-43758, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36121119

ABSTRACT

As the most studied two-dimensional (2D) material from the MXene family, Ti3C2Tx has constantly gained interest from academia and industry. Ti3C2Tx MXene has the highest electrical conductivity (up to 24,000 S cm-1) and one of the highest stiffness values with a Young's modulus of ∼ 334 GPa among water-dispersible conductive 2D materials. The negative surface charge of MXene helps to disperse it well in aqueous and other polar solvents. This solubility across a wide range of solvents, excellent interface interaction, tunable surface functionality, and stability with other organic/polymeric materials combined with the layered structure of Ti3C2Tx MXene make it a promising material for anticorrosion coatings. While there are many reviews on Ti3C2Tx MXene polymer composites for catalysis, flexible electronics, and energy storage, to our knowledge, no review has been published yet on MXenes' anticorrosion applications. In this brief report, we summarize the current progress and the development of Ti3C2Tx polymer composites for anticorrosion. We also provide an outlook and discussion on possible ways to improve the exploitation of Ti3C2Tx polymer composites as anticorrosive materials. Finally, we provide a perspective beyond Ti3C2Tx MXene composition for the development of future anticorrosion coatings.

4.
ACS Appl Mater Interfaces ; 12(8): 9797-9805, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31999093

ABSTRACT

Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation.

5.
Chemistry ; 26(12): 2749-2753, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31826315

ABSTRACT

Poly(2-oxazoline)s (POx) bottle-brush brushes have excellent biocompatible and lubricious properties, which are promising for the functionalization of surfaces for biomedical devices. Herein, a facile synthesis of POx is reported which is based bottle-brush brushes (BBBs) on solid substrates. Initially, backbone brushes of poly(2-isopropenyl-2-oxazoline) (PIPOx) were fabricated via surface initiated Cu0 plate-mediated controlled radical polymerization (SI-Cu0 CRP). Poly(2-methyl-2-oxazoline) (PMeOx) side chains were subsequently grafted from the PIPOx backbone via living cationic ring opening polymerization (LCROP), which result in ≈100 % increase in brush thickness (from 58 to 110 nm). The resultant BBBs shows tunable thickness up to 300 nm and high grafting density (σ) with 0.42 chains nm-2 . The synthetic procedure of POx BBBs can be further simplified by using SI-Cu0 CRP with POx molecular brush as macromonomer (Mn =536 g mol-1 , PDI=1.10), which results in BBBs surface up to 60 nm with well-defined molecular structure. Both procedures are significantly superior to the state-of-art approaches for the synthesis of POx BBBs, which are promising to design bio-functional surfaces.


Subject(s)
Biocompatible Materials/chemical synthesis , Oxazoles/chemical synthesis , Copper/chemistry , Molecular Structure , Oxazoles/chemistry , Polyamines/chemistry , Polymerization , Polypropylenes/chemistry
6.
Adv Healthc Mater ; 8(18): e1900352, 2019 09.
Article in English | MEDLINE | ID: mdl-31410996

ABSTRACT

The shape of nanoparticles is known recently as an important design parameter influencing considerably the fate of nanoparticles with and in biological systems. Several manufacturing techniques to generate nonspherical nanoparticles as well as studies on in vitro and in vivo effects thereof have been described. However, nonspherical nanoparticle shape stability in physiological-related conditions and the impact of formulation parameters on nonspherical nanoparticle resistance still need to be investigated. To address these issues, different nanoparticle fabrication methods using biodegradable polymers are explored to produce nonspherical nanoparticles via the prevailing film-stretching method. In addition, systematic comparisons to other nanoparticle systems prepared by different manufacturing techniques and less biodegradable materials (but still commonly utilized for drug delivery and targeting) are conducted. The study evinces that the strong interplay from multiple nanoparticle properties (i.e., internal structure, Young's modulus, surface roughness, liquefaction temperature [glass transition (Tg ) or melting (Tm )], porosity, and surface hydrophobicity) is present. It is not possible to predict the nonsphericity longevity by merely one or two factor(s). The most influential features in preserving the nonsphericity of nanoparticles are existence of internal structure and low surface hydrophobicity (i.e., surface-free energy (SFE) > ≈55 mN m-1 , material-water interfacial tension <6 mN m-1 ), especially if the nanoparticles are soft (<1 GPa), rough (Rrms > 10 nm), porous (>1 m2 g-1 ), and in possession of low bulk liquefaction temperature (<100 °C). Interestingly, low surface hydrophobicity of nanoparticles can be obtained indirectly by the significant presence of residual stabilizers. Therefore, it is strongly suggested that nonsphericity of particle systems is highly dependent on surface chemistry but cannot be appraised separately from other factors. These results and reviews allot valuable guidelines for the design and manufacturing of nonspherical nanoparticles having adequate shape stability, thereby appropriate with their usage purposes. Furthermore, they can assist in understanding and explaining the possible mechanisms of nonspherical nanoparticles effectivity loss and distinctive material behavior at the nanoscale.


Subject(s)
Drug Delivery Systems , Nanoparticles/chemistry , Elastic Modulus , Hydrodynamics , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nanoparticles/ultrastructure , Porosity , Silicon Dioxide/chemistry , Static Electricity , Surface Properties
7.
Small ; 15(19): e1805228, 2019 May.
Article in English | MEDLINE | ID: mdl-30932320

ABSTRACT

Direct covalent functionalization of large-area single-layer hexagonal boron nitride (hBN) with various polymer brushes under mild conditions is presented. The photopolymerization of vinyl monomers results in the formation of thick and homogeneous (micropatterned, gradient) polymer brushes covalently bound to hBN. The brush layer mechanically and chemically stabilizes the material and allows facile handling as well as long-term use in water splitting hydrogen evolution reactions.

8.
Nat Commun ; 9(1): 4051, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30282989

ABSTRACT

Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-assembled initiator monolayer in a monomer solution with single-layer graphene separating the initiator from the monomer. We demonstrate that neutral monomers are able to pass through the graphene (via native defects) and increase the graphene defects ratio (Raman ID/IG) from ca. 0.09 to 0.22. The translocations of anionic and cationic monomers through graphene are significantly slower due to chemical interactions of monomers with the graphene defects. Interestingly, if micropatterned initiator-monolayers are used, the translocations of anionic monomers apparently cut the graphene sheet into congruent microscopic structures. The varied interactions between monomers and graphene defects are further investigated by quantum molecular dynamics simulations.

9.
Angew Chem Int Ed Engl ; 57(50): 16380-16384, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30300921

ABSTRACT

We present the "on water" surface-initiated Cu-mediated controlled radical polymerization ("on water" SI-CuCRP) that converts hydrophobic monomers in aqueous reaction medium to polymer brushes at unparalleled speed and efficiency. The method allows the facile conversion of a variety of common monomers under most simple reaction conditions and with minimal monomer amounts to thick and homogeneous polymer brushes. The highly living character of the "on water" SI-CuCRP allowed the preparation of decablock (homo)polymer brushes and opens the pathway to sequentially controlled polymer brushes on solids.

10.
Adv Mater ; 28(7): 1489-94, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26671880

ABSTRACT

2D mussel-inspired polydopamine (PDA) nanosheets are prepared and exploited as a functional surface for grafting various polymer brushes. The PDA nanosheet and its polymer-brush derivatives show lateral integrity and are robust; therefore, they can be detached from their substrates. Cell-adhesion tests show that the PDA nanosheet promotes cell growth and attachment, while a PDA-based poly(3-sulfopropyl methacrylate) carpet exhibits nonfouling behavior.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Bivalvia , Indoles/chemistry , Indoles/pharmacology , Nanostructures/chemistry , Photochemical Processes , Polymers/chemistry , Polymers/pharmacology , Animals , Cell Adhesion/drug effects , Cell Line , Methacrylates/chemistry , Mice , Nylons/chemistry , Polystyrenes/chemistry
11.
Macromol Biosci ; 16(1): 75-81, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26524353

ABSTRACT

Patterned polypeptoid brushes on gold and oxide substrates are synthesized by surface-initiated polymerization of N-substituted glycine N-carboxyanhydrides. Their biofouling resistance is shown by protein and cell adhesion experiments. The accessibility of the system to common patterning protocols is demonstrated by UV-lithography and a µCP approach. Moreover, the terminal secondary amine group of the polypeptoid brushes is functionalized with different fluorescent dyes to demonstrate their chemical accessibility.


Subject(s)
Biofouling/prevention & control , Cell Adhesion , Peptoids/chemical synthesis , Proteins/chemistry , Humans , Peptoids/chemistry , Protein Binding , Surface Properties
12.
Langmuir ; 29(23): 6983-8, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23663172

ABSTRACT

Polypeptoid brushes were synthesized by surface-initiated polymerization of N-substituted glycine N-carboxyanhydrides on self-assembled amine monolayers. Using the presented grafting-from approach, polypeptoid brush thicknesses of approximately 40 nm could be obtained as compared to previously reported brush thicknesses of 4 nm. Moreover, hydrophilic, hydrophobic and amphiphilic polymer brushes were realized which are expected to have valuable applications as nonfouling surfaces and as model or references systems for surface grafted polypeptides.


Subject(s)
Anhydrides/chemistry , N-substituted Glycines/chemistry , Peptoids/chemistry , Molecular Structure , Peptoids/chemical synthesis , Polymerization , Surface Properties
13.
Macromol Biosci ; 12(7): 926-36, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22610725

ABSTRACT

POx bottle-brush brushes (BBBs) are synthesized by SIPGP of 2-isopropenyl-2-oxazoline and consecutive LCROP of 2-oxazolines on 3-aminopropyltrimethoxysilane-modified silicon substrates. The side chain hydrophilicity and polarity are varied. The impact of the chemical composition and architecture of the BBB upon protein (fibronectin) adsorption and endothelial cell adhesion are investigated and prove extremely low protein adsorption and cell adhesion on BBBs with hydrophilic side chains such as poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline). The influence of the POx side chain terminal function upon adsorption and adhesion is minor but the side chain length has a significant effect on bioadsorption.


Subject(s)
Biocompatible Materials/chemical synthesis , Polyamines/chemistry , Propylamines/chemistry , Silanes/chemistry , Silicon/chemistry , Adsorption/drug effects , Biocompatible Materials/pharmacology , Cell Adhesion/drug effects , Fibronectins/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Atomic Force , Spectroscopy, Fourier Transform Infrared , Surface Properties
14.
Chem Soc Rev ; 41(8): 3280-96, 2012 Apr 21.
Article in English | MEDLINE | ID: mdl-22234473

ABSTRACT

This critical review summarizes recent developments in the fabrication of patterned polymer brushes. As top-down lithography reaches the length scale of a single macromolecule, the combination with the bottom-up synthesis of polymer brushes by surface-initiated polymerization becomes one main avenue to design new materials for nanotechnology. Recent developments in surface-initiated polymerizations are highlighted along with diverse strategies to create patterned polymer brushes on all length scales based on irradiation (photo- and interference lithography, electron-beam lithography), mechanical contact (scanning probe lithography, soft lithography, nanoimprinting lithography) and on surface forces (capillary force lithography, colloidal lithography, Langmuir-Blodgett lithography) (116 references).


Subject(s)
Nanotechnology/methods , Polymers/chemistry , Printing/methods , Electrons
15.
Small ; 7(5): 683-7, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21370466

ABSTRACT

For the development of polymer carpets as active devices for micro- and nanotechnology, a control of the polymer carpet morphology and especially control of the stimulus responsive polymer brush is needed. Here, we report on the first example for the fabrication of patterned polymer carpets. On a two-dimensional framework of fully crosslinked and chemically patterned nanosheets, polymer brushes of styrene and 4-vinyl pyridine were grafted by self-initiated surface photopolymerization and photografting (SIPGP). It was found that polymer grafting by SIPGP occurred over the entire nanosheets but with a preferred grafting on the amino functionalized nanosheet areas. This results in continuous polymer carpets with an intact nanosheet framework but with amplification of the chemical patterning into a three dimensional topography of the grafted polymer brush. In the case of negative patterned nanosheets, the patterned carpet could be prepared as freestanding ultrathin membranes. Furthermore, swelling experiments with poly(4-vinyl pyridine) carpets showed that the patterns induces a directional buckling of the flexible polymer carpet. This may open the possibility of the development of micro- or nanoactuator devices with anisotropic responds upon environmental changes.


Subject(s)
Polymers/chemistry , Microscopy, Atomic Force , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology , Polyvinyls/chemistry , Surface Properties
16.
Small ; 6(15): 1623-30, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20635346

ABSTRACT

The fabrication of defined polymer objects of reduced dimensions such as polymer-coated nanoparticles (zero-dimensional (0D)), cylindrical brushes (1D), and polymer membranes (2D), is currently the subject of intense research. In particular, ultrathin polymer membranes with high aspect ratios are being discussed as novel materials for miniaturized sensors because they would provide extraordinary sensitivity and dynamic range when sufficient mechanical stability can be combined with flexibility and chemical functionality. Unlike current approaches that rely on crosslinking of polymer layers for stabilization, this report presents the preparation of a new class of polymer material, so-called "polymer carpets," a freestanding polymer brush grown by surface-initiated polymerization on a crosslinked 1-nm-thick monolayer. The solid-supported, as well as freestanding, polymer carpets are found to be mechanically robust and to react instantaneously and reversibly to external stimuli by buckling. The carpet mechanics and the dramatic changes of the film properties (optical, wetting) upon chemical stimuli are investigated in detail as they allow the development of completely new integrated micro-/nanotechnology devices.


Subject(s)
Nanostructures/chemistry , Polymers/chemistry , Microscopy, Atomic Force , Nanostructures/ultrastructure , Nanotechnology
17.
Phys Chem Chem Phys ; 10(48): 7233-8, 2008 Dec 28.
Article in English | MEDLINE | ID: mdl-19060967

ABSTRACT

Mechanically stable monolayers with chemically functional patterns are fabricated by the combination of spatially resolved chemical lithography with complete cross-linking of aromatic self-assembled monolayers (SAMs). The process starts with a local electron exposure of a SAM of 4'-nitro-1,1'-biphenyl-4-thiol that converts the nitro into amino groups and, additionally, generates a pattern of cross-linked and non cross-linked regions. In the next step, molecules in the non cross-linked regions are exchanged for 1,1'-biphenyl-4-thiol. A subsequent electron exposure cross-links these regions, yielding a fully cross-linked, chemically patterned SAM. The reverse process that generates chemically complementary patterns is also demonstrated. For both processes, X-ray photoelectron spectroscopy and atomic force microscopy are used to monitor the fabrication steps and to determine the kinetics of the thiol exchange. The functionality of the fully cross-linked, chemically patterned monolayer is tested by the site selective derivatisation with pentanoic acid chloride.

SELECTION OF CITATIONS
SEARCH DETAIL
...